1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
| import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras.models import Model import numpy as np import os
from load_data import load_data
batch_size = 32 epochs = 100 num_classes = 10
subtract_pixel_mean = True
n = 3
version = 1
depth = n * 6 + 2
model_type = 'ResNet%dv%d' % (depth, version)
(x_train, y_train), (x_test, y_test) = load_data() print('load data successfully!')
input_shape = x_train.shape[1:]
x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255
if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean
print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape)
y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) print('Begin model training...')
def lr_schedule(epoch): lr = 1e-3 if epoch > 180: lr *= 0.5e-3 elif epoch > 160: lr *= 1e-3 elif epoch > 120: lr *= 1e-2 elif epoch > 80: lr *= 1e-1 print('Learning rate: ', lr) return lr
def resnet_layer(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu', batch_normalization=True, conv_first=True):
conv = Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same', kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))
x = inputs if conv_first: x = conv(x) if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) else: if batch_normalization: x = BatchNormalization()(x) if activation is not None: x = Activation(activation)(x) x = conv(x) return x
def resnet_v1(input_shape, depth, num_classes=10): if (depth - 2) % 6 != 0: raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])') num_filters = 16 num_res_blocks = int((depth - 2) / 6)
inputs = Input(shape=input_shape) x = resnet_layer(inputs=inputs) for stack in range(3): for res_block in range(num_res_blocks): strides = 1 if stack > 0 and res_block == 0: strides = 2 y = resnet_layer(inputs=x, num_filters=num_filters, strides=strides) y = resnet_layer(inputs=y, num_filters=num_filters, activation=None) if stack > 0 and res_block == 0: x = resnet_layer(inputs=x, num_filters=num_filters, kernel_size=1, strides=strides, activation=None, batch_normalization=False) x = keras.layers.add([x, y]) x = Activation('relu')(x) num_filters *= 2
x = AveragePooling2D(pool_size=8)(x) y = Flatten()(x) outputs = Dense(num_classes, activation='softmax', kernel_initializer='he_normal')(y)
model = Model(inputs=inputs, outputs=outputs) return model
model = resnet_v1(input_shape=input_shape, depth=depth, num_classes=num_classes) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=lr_schedule(0)), metrics=['accuracy']) model.summary() print(model_type)
save_dir = os.path.join(os.getcwd(), 'saved_models') model_name = 'garbage_%s_model.{epoch:03d}.h5' % model_type if not os.path.isdir(save_dir): os.makedirs(save_dir) filepath = os.path.join(save_dir, model_name)
checkpoint = ModelCheckpoint(filepath=filepath, monitor='val_acc', verbose=1, save_best_only=True)
lr_scheduler = LearningRateScheduler(lr_schedule)
lr_reducer = ReduceLROnPlateau(factor=np.sqrt(0.1), cooldown=0, patience=5, min_lr=0.5e-6)
callbacks = [checkpoint, lr_reducer, lr_scheduler]
print('Using real-time data augmentation.')
datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=True, vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None, validation_split=0.0)
datagen.fit(x_train)
model.fit_generator(datagen.flow(x_train, y_train, batch_size=batch_size), steps_per_epoch=len(x_train) // batch_size, validation_data=(x_test, y_test), epochs=epochs, verbose=1, workers=4, callbacks=callbacks)
scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1])
|