1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
| import argparse import json import os import time
import numpy as np import pandas as pd import torch from transformers import AutoModelForCausalLM, AutoTokenizer
from categories import categories, subcategories
choices = ["A", "B", "C", "D"]
def format_subject(subject): l = subject.split("_") s = "" for entry in l: s += " " + entry return s
def format_example(df, idx, include_answer=True): prompt = df.iloc[idx, 0] k = df.shape[1] - 2 for j in range(k): prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1]) prompt += "\nAnswer:" if include_answer: prompt += " {}\n\n".format(df.iloc[idx, k + 1]) return prompt
def gen_prompt(train_df, subject, k=-1): prompt = "The following are multiple choice questions (with answers) about {}.\n\n".format( format_subject(subject) ) if k == -1: k = train_df.shape[0] for i in range(k): prompt += format_example(train_df, i) return prompt
@torch.no_grad() def eval(args, subject, model, tokenizer, dev_df, test_df): cors = [] all_probs = [] answers = choices[: test_df.shape[1] - 2]
for i in range(test_df.shape[0]): k = args.ntrain prompt_end = format_example(test_df, i, include_answer=False) train_prompt = gen_prompt(dev_df, subject, k) prompt = train_prompt + prompt_end
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
while input_ids.shape[-1] > 2048: k -= 1 train_prompt = gen_prompt(dev_df, subject, k) prompt = train_prompt + prompt_end input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to( model.device )
label = test_df.iloc[i, test_df.shape[1] - 1]
logits = model(input_ids=input_ids).logits[0, -1]
probs = ( torch.nn.functional.softmax( torch.tensor( [ logits[tokenizer("A").input_ids[-1]], logits[tokenizer("B").input_ids[-1]], logits[tokenizer("C").input_ids[-1]], logits[tokenizer("D").input_ids[-1]], ] ).float(), dim=0, ) .detach() .cpu() .numpy() ) pred = {0: "A", 1: "B", 2: "C", 3: "D"}[np.argmax(probs)]
cor = pred == label cors.append(cor) all_probs.append(probs)
acc = np.mean(cors) cors = np.array(cors)
all_probs = np.array(all_probs) print("Average accuracy {:.3f} - {}".format(acc, subject))
return cors, acc, all_probs
def main(args): model = AutoModelForCausalLM.from_pretrained( args.model, torch_dtype=torch.float16, load_in_8bit=False, low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) model.eval() subjects = sorted( [ f.split("_test.csv")[0] for f in os.listdir(os.path.join(args.data_dir, "test")) if "_test.csv" in f ] )
if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) if not os.path.exists(os.path.join(args.save_dir, "results_{}".format(args.model.split("/")[-1]))): os.makedirs(os.path.join(args.save_dir, "results_{}".format(args.model.split("/")[-1])))
all_cors = [] subcat_cors = { subcat: [] for subcat_lists in subcategories.values() for subcat in subcat_lists } cat_cors = {cat: [] for cat in categories}
start_time = time.time() for subject in subjects: dev_df = pd.read_csv( os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None )[: args.ntrain] test_df = pd.read_csv( os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None )
cors, acc, probs = eval(args, subject, model, tokenizer, dev_df, test_df) subcats = subcategories[subject] for subcat in subcats: subcat_cors[subcat].append(cors) for key in categories.keys(): if subcat in categories[key]: cat_cors[key].append(cors) all_cors.append(cors)
test_df["{}_correct".format(args.model)] = cors for j in range(probs.shape[1]): choice = choices[j] test_df["{}_choice{}_probs".format(args.model, choice)] = probs[:, j] test_df.to_csv( os.path.join( args.save_dir, "results_{}".format(args.model.split("/")[-1]), "{}.csv".format(subject) ), index=None, )
results = {"subcategories": {}, "categories": {}} for subcat in subcat_cors: subcat_acc = np.mean(np.concatenate(subcat_cors[subcat])) results["subcategories"][subcat] = subcat_acc print("Average accuracy {:.3f} - {}".format(subcat_acc, subcat))
for cat in cat_cors: cat_acc = np.mean(np.concatenate(cat_cors[cat])) results["categories"][cat] = cat_acc print("Average accuracy {:.3f} - {}".format(cat_acc, cat)) weighted_acc = np.mean(np.concatenate(all_cors)) results["weighted_accuracy"] = weighted_acc print("Average accuracy: {:.3f}".format(weighted_acc))
results_file = os.path.join( args.save_dir, "accuracies_{}.json".format(args.model.replace("/", "_")) ) end_time = time.time() results["cost_time"] = end_time - start_time with open(results_file, "w") as f: f.write(json.dumps(results, indent=4))
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--ntrain", "-k", type=int, default=5) parser.add_argument("--data_dir", "-d", type=str, default="data") parser.add_argument("--save_dir", "-s", type=str, default="results") parser.add_argument("--model", "-m", type=str) args = parser.parse_args() main(args)
|