| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 
 | from numpy import vstack
 from pandas import read_csv
 from sklearn.preprocessing import LabelEncoder
 from sklearn.metrics import accuracy_score
 import torch
 from torch import Tensor
 from torch.optim import SGD
 from torch.utils.data import Dataset, DataLoader, random_split
 from torch.nn import Linear, ReLU, Sigmoid, Module, BCELoss
 from torch.nn.init import kaiming_uniform_, xavier_uniform_
 
 
 
 class CSVDataset(Dataset):
 
 def __init__(self, path):
 
 df = read_csv(path, header=None)
 
 self.X = df.values[:, :-1]
 self.y = df.values[:, -1]
 
 self.X = self.X.astype('float32')
 
 self.y = LabelEncoder().fit_transform(self.y)
 self.y = self.y.astype('float32')
 self.y = self.y.reshape((len(self.y), 1))
 
 
 def __len__(self):
 return len(self.X)
 
 
 def __getitem__(self, idx):
 return [self.X[idx], self.y[idx]]
 
 
 def get_splits(self, n_test=0.3):
 
 test_size = round(n_test * len(self.X))
 train_size = len(self.X) - test_size
 
 return random_split(self, [train_size, test_size])
 
 
 
 class MLP(Module):
 
 def __init__(self, n_inputs):
 super(MLP, self).__init__()
 
 self.hidden1 = Linear(n_inputs, 10)
 kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
 self.act1 = ReLU()
 
 self.hidden2 = Linear(10, 8)
 kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
 self.act2 = ReLU()
 
 self.hidden3 = Linear(8, 1)
 xavier_uniform_(self.hidden3.weight)
 self.act3 = Sigmoid()
 
 
 def forward(self, X):
 
 X = self.hidden1(X)
 X = self.act1(X)
 
 X = self.hidden2(X)
 X = self.act2(X)
 
 X = self.hidden3(X)
 X = self.act3(X)
 return X
 
 
 
 def prepare_data(path):
 
 dataset = CSVDataset(path)
 
 train, test = dataset.get_splits()
 
 train_dl = DataLoader(train, batch_size=32, shuffle=True)
 test_dl = DataLoader(test, batch_size=1024, shuffle=False)
 return train_dl, test_dl
 
 
 
 def train_model(train_dl, model):
 
 criterion = BCELoss()
 optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
 
 for epoch in range(100):
 
 for i, (inputs, targets) in enumerate(train_dl):
 
 optimizer.zero_grad()
 
 yhat = model(inputs)
 
 loss = criterion(yhat, targets)
 
 loss.backward()
 print("epoch: {}, batch: {}, loss: {}".format(epoch, i, loss.data))
 
 optimizer.step()
 
 
 
 def evaluate_model(test_dl, model):
 predictions, actuals = [], []
 for i, (inputs, targets) in enumerate(test_dl):
 
 yhat = model(inputs)
 
 yhat = yhat.detach().numpy()
 actual = targets.numpy()
 actual = actual.reshape((len(actual), 1))
 
 yhat = yhat.round()
 
 predictions.append(yhat)
 actuals.append(actual)
 predictions, actuals = vstack(predictions), vstack(actuals)
 
 acc = accuracy_score(actuals, predictions)
 return acc
 
 
 
 def predict(row, model):
 
 row = Tensor([row])
 
 yhat = model(row)
 
 yhat = yhat.detach().numpy()
 return yhat
 
 
 if __name__ == '__main__':
 
 path = './data/ionosphere.csv'
 train_dl, test_dl = prepare_data(path)
 print(len(train_dl.dataset), len(test_dl.dataset))
 
 model = MLP(34)
 print(model)
 
 train_model(train_dl, model)
 torch.save(model.state_dict(), 'binary_classification.pth')
 print(model.state_dict())
 
 acc = evaluate_model(test_dl, model)
 print('Accuracy: %.3f' % acc)
 
 |