PyTorch入门(四)优化器比较

优化器就是在深度学习反向传播过程中,指引损失函数的各个参数往正确的方向更新合适的大小,使得更新后的各个参数让损失函数(目标函数)值不断逼近全局最小。

常见的优化器有:

  • 梯度及梯度下降算法

  • 随机梯度下降算法

  • 标准动量优化算法

  • AdaGrad算法

  • RMSProp算法

  • Adam算法

    本文将不会介绍这些算法的细节,我们通过一个例子来比较各优化器的表现。

    在PyTorch,实现的优化算法有SGD(随机梯度下降算法)、Adagrad(AdaGrad算法)、RMSprop(RMSprop算法)、Adam(Adam算法),我们将会通过各优化器在优化样例目标函数的最小值来观察它们的表现。以下是Python实现代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# -*- coding: utf-8 -*-
# @Time : 2023/3/18 11:01
# @Author : Jclian91
# @File : optimizer_comparsion.py
# @Place : Minghang, Shanghai
# comparison in Five optimizers in PyTorch: SGD, AdaGrad, RMSProp, Adam
import matplotlib.pyplot as plt
import torch
import torch.nn
import torch.utils.data as Data
from torch.utils.data import Dataset
from matplotlib import rcParams
rcParams['font.family'] = 'SimHei'

# prepare data
x = torch.unsqueeze(torch.linspace(-1, 1, 500), dim=1)
y = x.pow(3)

# set parameters
lr = 0.01
batch_size = 15
epoch = 5
torch.manual_seed(1234)


# Dataloader
class MyDataset(Dataset):
# load the dataset
def __init__(self, x, y):
self.X = x
self.y = y

# number of rows in the dataset
def __len__(self):
return len(self.X)

# get a row at an index
def __getitem__(self, idx):
return [self.X[idx], self.y[idx]]


loader = Data.DataLoader(dataset=MyDataset(x, y),
batch_size=batch_size,
shuffle=True,
num_workers=2)


# create model
class Net(torch.nn.Module):
def __init__(self, n_input, n_hidden, n_output):
super(Net, self).__init__()
self.hidden_layer = torch.nn.Linear(n_input, n_hidden)
self.output_layer = torch.nn.Linear(n_hidden, n_output)

def forward(self, input):
x = torch.relu(self.hidden_layer(input))
output = self.output_layer(x)
return output


# train model and plot
def train():
net_sgd = Net(1, 10, 1)
net_adagrad = Net(1, 10, 1)
net_rmsprop = Net(1, 10, 1)
net_adam = Net(1, 10, 1)
nets = [net_sgd, net_adagrad, net_rmsprop, net_adam]

# optimizer
opt_sgd = torch.optim.SGD(net_sgd.parameters(), lr=lr)
opt_momentum = torch.optim.Adagrad(net_adagrad.parameters(), lr=lr, lr_decay=0)
opt_rmsprop = torch.optim.RMSprop(net_rmsprop.parameters(), lr=lr, alpha=0.9)
opt_adam = torch.optim.Adam(net_adam.parameters(), lr=lr, betas=(0.9, 0.99))
optimizers = [opt_sgd, opt_momentum, opt_rmsprop, opt_adam]

# loss function
loss_func = torch.nn.MSELoss()
losses = [[], [], [], []]
for i_epoch in range(epoch):
for step, (batch_x, batch_y) in enumerate(loader):
for net, optimizer, loss_list in zip(nets, optimizers, losses):
pred_y = net(batch_x)
loss = loss_func(pred_y, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(loss.data.numpy())

plt.figure()
labels = ['SGD', 'AdaGrad', 'RMSProp', 'Adam']
for i, loss in enumerate(losses):
plt.plot(loss, label=labels[i])

plt.legend(loc='upper right', fontsize=15)
plt.tick_params(labelsize=13)
plt.xlabel('训练步骤', size=15)
plt.ylabel('模型损失', size=15)
plt.ylim((0, 0.3))
# plt.show()
plt.savefig('optimizer_comparison.png')


if __name__ == '__main__':
train()

各优化器在优化目标函数的损失值的图像如下:

从中我们可以看到,在上述四个优化器中,Adam和RMSProp优化器表现较好,其中Adam优化器收敛最快,表现最稳定。

欢迎关注我的公众号NLP奇幻之旅,原创技术文章第一时间推送。

欢迎关注我的知识星球“自然语言处理奇幻之旅”,笔者正在努力构建自己的技术社区。


PyTorch入门(四)优化器比较
https://percent4.github.io/PyTorch入门(四)优化器比较/
作者
Jclian91
发布于
2023年7月30日
许可协议